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ABSTRACT 14	  

The National Aeronautics and Space Administration Micropulse Lidar Network Version 3 cloud 15	  

detection algorithm is described and its differences relative to the previous version highlighted.  16	  

Clouds are identified from normalized Level 1 signal profiles using two complementary 17	  

methods.  The first considers signal derivatives vertically for resolving low-level clouds.  The 18	  

second, which resolves high-level clouds like cirrus, is based on signal uncertainties given the 19	  

relatively low signal-to-noise ratio exhibited in the upper troposphere by eye-safe network 20	  

instruments, especially during daytime.  Furthermore, a multi-temporal averaging scheme is used 21	  

to improve cloud detection under conditions of weak signal-to-noise.  Diurnal and seasonal 22	  

cycles of cloud occurrence frequency based on one year of measurements at the Goddard Space 23	  

Flight Center (Greenbelt, MD) site are compared for the new and previous versions.  The largest 24	  

differences, and perceived improvement, in detection occurs for high clouds (above 5-km, mean 25	  

sea level) which increase in occurrence by nearly 6%.  There is also an increase in the detection 26	  

of multi-layered cloud profiles from 9% to 20%.  Macrophysical properties and estimates of 27	  

cloud optical depth are presented for a transparent cirrus dataset.  However, the limit to which 28	  

molecular signal can be reliably retrieved above cirrus clouds occurs between cloud optical 29	  

depths of 0.5 and 0.8.     30	  
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1. Introduction 31	  

 Clouds play a critical role in the Earth’s climate system because they are inextricably linked 32	  

to the hydrological cycle and radiation budget (Liou 1986; Ramanthan et al. 1989).  Information 33	  

about cloud height, thickness, occurrence, and amount are critical inputs for a host of numerical 34	  

applications involving climate research.  Therefore, it is important to have highly accurate and 35	  

quantitative data records of cloud properties that span several years and geographic regions.  36	  

Verification of even the most basic modeling processes demands compulsory observations of 37	  

global cloud occurrence, if there is to be any confidence in their fidelity.   38	  

 Various methods of determining cloud climatologies exist, each with their own advantages 39	  

and limitations.  Visual observations from the surface (Warren et al. 1985; Hahn et al. 1996; 40	  

Hahn and Warren 1999) provide cloud fraction and morphological cloud types.  However, these 41	  

can be biased by the quality of technician training, underestimation of high clouds, sparse global 42	  

coverage, and nighttime bias.  Passive radiometric sensors aboard satellites, which are the core 43	  

input of the International Satellite Cloud Climatology Project (ISCCP; Rossow and Schiffer 44	  

1991, 1999), offer a true global representation and have the best (unobstructed) potential view of 45	  

high clouds.  However, these can undersample low-level maritime clouds and underrepresent 46	  

optically-thin cirrus clouds (Holz et al. 2008).   47	  

 Active sensors, like lidar and radar (Platt et al. 1994; Moran et al. 1998; Wang and Sassen 48	  

2001), are the primary tools for observing and profiling cloud vertical structure to high accuracy.  49	  

When flown aboard satellites, like Cloud Aerosol Lidar and Infrared Pathfinder Satellite 50	  

Observations (CALIPSO; Winker et al. 2007) and CloudSat (Stephens et al. 2002), active 51	  

sensors also provide global coverage.  Even still, the relatively narrow profiling curtain of 52	  

current active sensors limits observation densities.  In the case of CALIPSO and CloudSat, these 53	  
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missions provide at most two profiles per 24-hour period over most regions, which limits studies 54	  

of the diurnal impact of clouds on the Earth system.  Fundamentally, an array of remote sensing 55	  

methods is needed in order to investigate the complexity of clouds (Schiffer and Rossow 1983).    56	  

2. Micropulse Lidar Network 57	  

 The National Aeronautics and Space Administration (NASA) Micropulse Lidar Network 58	  

(MPLNET; Welton et al. 2001, http://mplnet.gsfc.nasa.gov) is a federated network of micropulse 59	  

lidar (MPL) systems deployed worldwide in support of basic science and the NASA Earth 60	  

Observing System program (Wielicki et al. 1995).  A benefit of MPLNET is the use of a 61	  

standardized instrument employing a common data processing algorithm with thorough 62	  

uncertainty characterization, which allows for straightforward comparisons between sites.  With 63	  

sites in polar, mid-latitude, and tropical regions and continuous day/night, high temporal 64	  

resolution datasets going back as far as 1999, MPLNET datasets represent a valuable archive for 65	  

improving our understanding of global cloud macrophysical properties on diurnal, season, and 66	  

decadal scales.  67	  

 There have been two versions of MPLNET data processing algorithms to date. The first, 68	  

referred to as Version 1, was released in 2000.  Beginning in 2006, the project transitioned to 69	  

Version 2 (hereafter V2) data products which are currently available.  Version 3 (hereafter V3) 70	  

data processing algorithms are currently in development.            71	  

 The V2 Level 1 MPLNET data products contain the system diagnostics (e.g. solar 72	  

background counts, instrument temperature and energy, etc.), normalized relative backscatter 73	  

(NRB), and NRB uncertainty.  The NRB is reported at one-minute temporal resolution up to 30-74	  

km, typically at 75-m vertical resolution (some sites operate at 30-m).  The NRB is defined as:  75	  

 (1) NRB(z) =Cβ(z)T 2 (z)
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where C is the instrument calibration constant, β is the backscatter coefficient from both 76	  

molecules and particles, T2 is the corresponding total atmospheric two-way transmittance, and z 77	  

is the altitude.  NRB and the calculation of its uncertainty are discussed by Campbell et al. 78	  

(2002) and Welton and Campbell (2002).  Level 1 data are available in real time with no quality 79	  

assurance.  Cloud base and top heights are identified in the V2 Level 1.5 (real time, no quality 80	  

assurance) and Level 2 (not real time, quality assured) MPLNET data products.  The V2 Level 81	  

1.5 data products use temperature and pressure profiles from US Standard Atmospheres (COESA 82	  

1976) to determine molecular calculations, while National Centers for Environmental Prediction 83	  

(NCEP)/National Center for Atmospheric Research (NCAR) Reanalysis (Kalnay et al. 1996) is 84	  

used for V2 Level 2 data.        85	  

 MPLNET V2 data products have been used to distinguish cloud presence in a number of 86	  

scientific investigations to date.  For example, Campbell and Sassen (2008) use data from the 87	  

South Pole to document polar stratospheric cloud occurrence over multiple seasons.  Shupe et al. 88	  

(2011) consider MPLNET measurements at Ny-Ålesund, Norway as context for evaluating Artic 89	  

cloud properties.  Others have investigated cirrus contamination of Aerosol Robotic Network 90	  

(AERONET) aerosol optical depth in Southeast Asia (Chew et al. 2011; Huang et al. 2011) and 91	  

globally (Huang et al. 2012).  Lolli et al. (2013) use collocated 355/527-nm MPLNET 92	  

observations to estimate the drizzle droplet size from stratocumulus and stratus clouds.    93	  

 A new V3 cloud detection algorithm has been developed to improve the quality of MPLNET 94	  

cloud products.  The new algorithm uses a combination of signal-processing techniques and a 95	  

multi-resolution temporal averaging scheme to resolve cloud boundaries.  Meteorological 96	  

profiles provided by the Goddard Earth Observing System – Version 5 (GEOS-5) Atmospheric 97	  

General Circulation Model (AGCM; Rienecker et al. 2008; Molod et al. 2012) are used for 98	  
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molecular calculations.  Specifically, the Forward Processing for Instrument Teams (FP-IT) 99	  

GEOS-5 Version 5.9.1 data are utilized (http://gmao.gsfc.nasa.gov/products).   The model data 100	  

are available at 3-hour intervals over 72 pressure levels at 0.625° longitude and 0.5° latitude 101	  

resolution.  Modeled profiles for this study were subsampled from the GEOS-5 grid containing 102	  

the Goddard Space Flight Center (GSFC) site location, and interpolated to the MPLNET range 103	  

and time resolutions (75 m, 1 minute).  104	  

 The goals of this paper are to describe the new algorithm and demonstrate performance.  We 105	  

outline changes relative to V2 cloud detection and describe how the new algorithm is applied to a 106	  

variety of cloudy scenes.  We apply one year of data collected at the GSFC MPLNET site 107	  

(38.99° N, 76.84° W, 0.05 km above mean sea level; MSL) to compare V2 and V3 results and 108	  

highlight the impact of our upgraded techniques through differences in macrophysical cloud 109	  

properties observed from this location.      110	  

3. Cloud detection algorithm description 111	  

 Examples of daytime and nighttime NRB profiles at GSFC are shown in Fig. 1.  Both 112	  

profiles show high-level clouds with base heights near 10 km and top heights near 13 km, MSL.  113	  

The daytime NRB profile exhibits relatively lower signal-to-noise compared with the nighttime 114	  

case due to higher solar background, which makes detection of elevated layers an increasingly 115	  

difficult task.                  116	  

a. Version 2 cloud detection 117	  

 Layers are identified in the V2 cloud detection algorithm by a combination of two retrieval 118	  

methods applied to the Level 1 data products.  The first method requires that the first derivative 119	  

of the lidar signal exceed a minimum threshold in order to detect a layer.  The assumption of 120	  

strong signal gradients makes this well suited for detecting liquid-phase clouds, which are 121	  
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frequently at lower levels in the NRB profile and correspond with higher signal-to-noise. This is 122	  

hereafter referred to as the gradient-based cloud detection method (GCDM).  The second method 123	  

is designed for use in cases of low signal-to-noise ratio (SNR) and relies on uncertainties in the 124	  

lidar signal.  This method uses two tunable thresholds and one objective threshold to identify 125	  

cloud boundaries, and is hereafter referred to as the uncertainty-based cloud detection method 126	  

(UCDM).   127	  

 Given the relatively low SNR exhibited by the MPL in the upper troposphere at base one-128	  

minute resolution (primarily during daytime), no single procedure is used to detect all cloud 129	  

types at all times.  Thus the merger of these two methods offers the possibility to retrieve the 130	  

entire cloud vertical structure to the limit of signal attenuation.  We describe the basis for each 131	  

method, as follows.   132	  

 1) GRADIENT-BASED CLOUD DETECTION 133	  

 Autonomous methods of cloud detection using gradients in the lidar signal, such as the 134	  

differential zero-crossing method described by Pal et al. (1992), are well established.  The first 135	  

step in the GCDM is to normalize the NRB using the attenuated molecular backscatter 136	  

coefficient,  137	  

𝛽!! 𝑧 = 𝛽!𝑇!! 𝑧 , (2) 

which produces an attenuated scattering ratio, βrʹ′, multiplied by the instrument calibration 138	  

constant as 139	  

C !βr (z) =
Cβ(z)T 2 (z)

!βm (z)
=
C[βm (z)+βp(z)]Tm

2 (z)Tp
2 (z)

βm (z)Tm
2 (z)

=C 1+
βp(z)
βm (z)

"

#
$

%

&
'Tp

2 (z) . (3) 

Here the subscripts m and p denote contributions from molecules and particles, respectively.  140	  

 The first derivative of Cβrʹ′ is used to identify clouds in the GCDM.  Due to increasing 141	  

uncertainty in the profile with height, the GCDM retrieval is only performed up to a “noise 142	  
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altitude”, defined as the altitude at which the uncertainty, δNRB, exceeds half of the NRB (or 143	  

conversely, analogous to an SNR of 2).  Cloud presence corresponds with an increase in total 144	  

backscatter, which results in a large positive gradient in Cβrʹ′ with height as seen in Fig. 2.  The 145	  

threshold used to identify the cloud base is defined as 146	  

	   amax = K ⋅C "βr , (4) 

where 𝐶𝛽!′ is the mean value of Cβrʹ′ up to the noise altitude and K is an empirical parameter 147	  

(unitless), set to 10 for this study.  The value of K is chosen carefully so that it is high enough to 148	  

reject insignificant peaks in the first derivative of Cβrʹ′ (i.e. aerosol stratification in the surface-149	  

attached layer or signal noise) while remaining sensitive enough to identify weakly-scattering 150	  

clouds.   151	  

 The cloud base is identified at the altitude bin immediately preceding that where the first 152	  

derivative of Cβrʹ′ exceeds amax.  Identification of cloud top is more ambiguous and is performed 153	  

using one of two processes.  A negative gradient in Cβrʹ′ occurs near the top of a cloud, 154	  

corresponding with the decrease in total backscatter and the impact of signal attenuation through 155	  

the cloud.  The first method used to identify the cloud top relies on a threshold defined as  156	  

amin =C !βr − amax . (5) 

The algorithm begins by looking for altitude bins above the cloud base where the first derivative 157	  

of Cβrʹ′ falls below amin.  Then the altitude bin where the first derivative initially returns above 158	  

amin is identified as the cloud top.   However, if this condition is not met, the cloud top is chosen 159	  

as the altitude bin where the value of Cβrʹ′ falls below the value at the cloud base or the noise 160	  

altitude, whichever occurs first.  If the lidar signal becomes significantly attenuated within the 161	  
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cloud, the designation as an apparent cloud top is more appropriate in accordance with standards 162	  

agreed upon by the Experimental Cloud Lidar Pilot Study (ECLIPS; Platt et al. 1994).   163	  

 Two cloud layers are apparent in Fig. 2.  Both cloud bases are identified at the altitudes 164	  

immediately below the amax exceedances (dashed line, positive derivative).  The first (lowest) 165	  

cloud top can be found using the amin threshold (dashed line, negative derivative).  But the 166	  

derivative never falls below amin for the second cloud layer.  Therefore, the alternative process is 167	  

used to identify the apparent cloud top.  Only true (not apparent) cloud tops are reported in V2 168	  

MPLNET cloud products. 169	  

 2) UNCERTAINTY-BASED CLOUD DETECTION 170	  

 An alternative to algorithms that utilize gradients in the lidar return to identify clouds are 171	  

approaches that compare cloudy lidar returns to clear sky returns (Clothiaux et al. 2007).   172	  

Similarly, the UCDM uses a theoretical molecular return and the signal uncertainty to detect 173	  

elevated clouds, and is fully described by Campbell et al. (2008, hereafter C08).  However, a few 174	  

comments regarding its implementation are warranted.  The first step in the UCDM is to 175	  

approximate the value of the instrument calibration constant.  Level 1 NRB is divided by the 176	  

attenuated molecular backscatter coefficient, resulting in an attenuated scattering ratio multiplied 177	  

by the instrument calibration constant, as given in Eq. (3).  Next, a clear-sky search is performed 178	  

to locate a normalization region where we can approximate that βp approaches zero over a 179	  

certain number of range bins, N.  The nature of the UCDM only allows for cloud detection at 180	  

altitudes above the normalization region.  The calibration constant is approximated by averaging 181	  

Eq. (3) over the N bins.  C08 stress that this final normalization value, Cf
*, must be distinguished 182	  

from C due to unknown transmission losses below the normalization region.     183	  
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   As an example, a representation of the UCDM is shown in Fig. 3.  Beginning at 1-km 184	  

above ground level (AGL) and working upward, the uncertainty in Cβrʹ′ is evaluated at each 185	  

altitude bin according to the criteria set forth by C08 until a “clear-air” slot is found.  In this case, 186	  

the “clear-air” region used to determine the normalization value begins at r1 = 6.46 km and ends 187	  

at rN = 8.71 km.  Averaging Cβrʹ′ between r1 and rN gives a value of Cf
* = 92.33 MHz km3 sr 188	  

µJ−1.        189	  

 Once Cf
* has been calculated, a so-called pseudo-attenuated backscatter and its uncertainty 190	  

are solved as  191	  

PAB(z) = NRB(z)
Cf
*

,
 (6) 

and 192	  

δPAB(z) = PAB(z) δNRB(z)
NRB(z)

!

"
#

$

%
&

2

+
δCf

*

Cf
*

'

(
))

*

+
,,

2

. (7) 

Eq. (7) is then modified by substituting the attenuated molecular backscatter for the PAB to 193	  

develop an objective threshold,  194	  

α(z) = βm (z)Tm
2 (z)+βm (z)Tm

2 (z) δNRB(z)
βm (z)Tm

2 (z)Cf
*

!

"
#
#

$

%
&
&

2

+
δCf

*

Cf
*

'

(
))

*

+
,,

2

, (8) 

which is used to differentiate what are first presumed cloud returns from molecular return.  195	  

Range bins above rN that meet the condition  196	  

PAB(z)−δPAB(z)>α(z) 	   (9) 

are then evaluated to determine whether they represent particulate layer base heights.  Range 197	  

bins that do not meet the condition from Eq. (9) are used to establish “clear-air” slots and are 198	  
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disqualified from the particulate base height search.  In other words, a minimum detectable 199	  

scattering ratio for particulates is defined as  200	  

βr,min (z) =
α(z)+δPAB(z)

!βm (z)
. (10) 

 Running averages of PAB and δPAB are used in conjunction with two additional tunable 201	  

thresholds, φ and κ (both analogous to a SNR), to determine the actual layer base and top 202	  

heights.  The threshold φ sets the minimum average value of PAB/δPAB for bins that exceed Eq. 203	  

(10) in order to identify the layer base.  At this point, and as described above, the UCDM 204	  

assumes that any such layers detected are hydrometeor clouds, thereby leaving the potential for 205	  

false detection of elevated aerosol layers.  In the absence of supplementary information, 206	  

however, such as color ratio (Liu et al. 2005) or depolarization (Cho et al. 2008, Omar et al. 207	  

2009) and combined with the goal of resolving as much thin cirrus as possible in the low SNR 208	  

portions of the NRB profile, this is unavoidable.  Mitigation strategies are described further 209	  

below.        210	  

 The threshold κ sets the minimum average value of PAB/δPAB for bins that do not exceed 211	  

Eq. (10) in order to identify clear air layers and consequently particulate layer tops.  In Fig. 3, the 212	  

red line indicates the threshold used to distinguish particulate from molecular returns.  Bins that 213	  

exceed this objective threshold are evaluated using the tunable threshold φ, while bins with 214	  

values lower than this threshold are evaluated using the tunable threshold κ.  The sensitivity of 215	  

V2 cloud detection to the tunable thresholds is evaluated in C08 and the values chosen for φ and 216	  

κ will depend on the site location and instrument performance parameters.   217	  

 3) V2 CLOUD RETRIEVALS 218	  
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 An example of V2 cloud retrievals is shown in the top panel of Fig. 4. Results from the 219	  

GCDM and UCDM are integrated based on the noise altitude (described in Section 3.a.1).  220	  

Clouds occurring below this height are reported from the GCDM.  All clouds above the noise 221	  

altitude are identified using the UCDM.  At night, the noise altitude reaches above typical cirrus 222	  

cloud heights at GSFC.  Therefore, the GCDM is almost exclusively responsible for cloud 223	  

detection.  As a result, weakly-scattering cirrus can go undetected, since GCDM thresholds are 224	  

tuned primarily with boundary layer phenomena in mind (i.e. suppression of aerosol 225	  

identification).  This can be observed frequently between 0300 and 0600 UTC in Fig. 4, where 226	  

cirrus presence is underreported and cloud base heights are overestimated.  227	  

 In the daytime, the noise altitude shown in Fig. 4 falls between 8–9 km and the UCDM is 228	  

responsible for all cloud detection above it.  In several instances, cloud bases (red markers) are 229	  

shown while the corresponding cloud tops (orange markers) appear to be missing.  In these cases 230	  

the lidar signal is assumed to be significantly attenuated, and therefore no cloud top is reported. 231	  

b. Version 3 cloud detection  232	  

 The V3 algorithm is based on V2 with a few meaningful changes to the UCDM. 233	  

Consequently, the changes in V3 represent an update to C08 and how the GCDM and UCDM are 234	  

merged.  A schematic of the V3 cloud detection algorithm at the one-minute base NRB temporal 235	  

resolution is shown in Fig. 5. Low-altitude obstructions (e.g. fog or low stratus decks) reduce 236	  

SNR and limit the accuracy of cloud retrievals. Therefore, each profile is screened for these 237	  

“beam-blocked” conditions by a process described further below.  If no such obstructions are 238	  

found, the first step in the UCDM is to calculate the normalization value.   239	  

 1) NORMALIZATION REGION    240	  

 As mentioned in C08, it is most practical to find a normalization region to calculate Cf
* 241	  

nearest to the instrument in order to increase the depth of the profile analyzed for clouds.  In V2, 242	  
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the clear-sky search is initiated at 1 km AGL.  However, in V3, an altitude of 5-km MSL is 243	  

chosen to reduce the likelihood of normalizing within relatively homogenous aerosol layers in or 244	  

near the boundary layer.  Furthermore, based on recent global cloud and aerosol studies (Holz et 245	  

al. 2008; Sassen et al. 2008; Campbell et al. 2015), 5 km represents a reasonable height to begin 246	  

the search for high clouds in tropical and mid-latitude locations.  A lower altitude may be needed 247	  

for polar sites, however.  In the event that it is not possible to perform the normalization step at 248	  

5-km, the UCDM attempts to normalize lower in the atmospheric profile iteratively, to as low as 249	  

1 km AGL, as done in the V2 algorithm.        250	  

 The normalization region also serves as the boundary between the GCDM and UCDM 251	  

retrievals in the V3 cloud algorithm, allowing the better-suited method (GCDM for low clouds 252	  

and UCDM for high clouds) to operate during both day and night. The V3 cloud retrievals in the 253	  

bottom panel of Fig. 4 can be compared with the V2 retrieval in the same figure to see the 254	  

relative apparent improvement.  We also note that there are conditions when either method 255	  

(GCDM or UCDM) may be used to retrieve high-level or low-level clouds.  Therefore, the 256	  

retrieval method for each cloud layer is provided as an output parameter.   257	  

 2) OBJECTIVE THRESHOLD 258	  

 The objective UCDM threshold, α, defined in Eq. (8) is now adjusted for attenuation within 259	  

cloud layers in V3.  In order to attenuate the α threshold, we assume an initial unity transmission 260	  

at the base of the first detected cloud layer.  Then the two-way transmittance is calculated at each 261	  

altitude bin Z within the cloud layer as 262	  

TC
2 (Z ) = TC

2 (Z −1)exp −2SCβC (Z )Δz[ ]

TC
2 (Z ) = TC

2 (Z −1)exp −2SC
#βr (Z )

TC
2 (Z −1)

−1
$

%
&

'

(
)βm (Z )Δz

*

+
,

-

.
/,
	   (11) 
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where βC is the cloud backscatter coefficient, SC is the extinction-to-backscatter ratio (or lidar 263	  

ratio) of the cloud, Δz is the vertical resolution of the instrument, and βrʹ′ is the attenuated 264	  

scattering ratio given by  265	  

!βr (z) =
NRB(z)
Cf
* !βm (z)

≈ 1+ βC (z)
βm (z)

#

$
%

&

'
(TC

2 (z) . (12) 

 Overestimating the single unknown term in these equations, the extinction-to-backscatter 266	  

ratio, will lead to excessive attenuation of the objective threshold and eventual 267	  

mischaracterization of clear sky as cloud.  Therefore, in this step, a very conservative choice for 268	  

SC equal to the molecular extinction-to-backscatter ratio (8π/3) is used. 269	  

 Once the transmittance has been determined, Eq. (8) is modified to recalculate the α 270	  

threshold as 271	  

α(z) = βm (z)Tm
2 (z)TC

2 (z)+βm (z)Tm
2 (z) δNRB(z)

βm (z)Tm
2 (z)Cf

*

!

"
#
#

$

%
&
&

2

+
δCf

*

Cf
*

'

(
))

*

+
,,

2

. (13) 

By attenuating the α threshold, we are able to better resolve cloud tops for optically-thick clouds.  272	  

Furthermore, multilayer clouds, where the upper layer was missed entirely by the V2 algorithm, 273	  

are now more effectively detected in some cases.     274	  

 3) MULTI-TEMPORAL RESOLUTION 275	  

 Cloud boundaries are only reported at one-minute temporal resolution in the V2 algorithm.  276	  

However, instances of high solar background reduce UCDM performance.  So, as described by 277	  

C08, multi-temporal resolution settings are used in V3.  In addition to the one-minute base 278	  

temporal resolution, the UCDM is performed for intermediate (five-minute) and long (twenty-279	  

minute) temporal averages using a sliding window centered on a corresponding one-minute 280	  

profile.  281	  
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 A flow chart describing the process is shown in Fig. 6.  Retrievals at the base temporal 282	  

resolution are used to screen profiles at longer averages, thus limiting the effects of “beam-283	  

blocked” profile contamination.  Within a window of N profiles, k profiles are removed from the 284	  

average if an attenuating structure is detected below 5 km at the base temporal resolution.  If k > 285	  

N/2, then the entire average profile is rejected.   286	  

 A combined cloud scene is created using cloud boundaries retrieved from the three temporal 287	  

resolutions.  First, the combined scene uses the cloud boundaries from the base temporal 288	  

resolution.  Next, the intermediate and then long temporal resolutions are used to fill in the 289	  

missing gaps as needed.  Cloud boundaries are always reported at the highest temporal resolution 290	  

possible to reduce the effects of cloud smearing caused by averaging.  This is broadly consistent 291	  

with the methodology used for NASA Cloud Aerosol Lidar with Orthogonal Polarization 292	  

(CALIOP) Level 2 products and their gridding of multiple spatial resolutions from the selective 293	  

iterated boundary locator (SIBYL) to their vertical feature mask (Vaughan et al. 2005).  A noted 294	  

difference is that SIBYL also uses an intensity-clearing process to remove features detected at 295	  

finer resolutions from the coarser spatial averages.  No such intensity clearing is performed with 296	  

the V3 algorithm.      297	  

 4) FALSE POSITIVES 298	  

 As mentioned previously, use of the UCDM presumes first only cloud presence.  Additional 299	  

constraints are thus used to reduce the number of instances when noise excursions, elevated 300	  

aerosol layers or poor normalizations produce false cloud retrievals.  The first constraint 301	  

establishes a minimum layer thickness of 150 m (i.e., two bins at 75-m resolution) in order to 302	  

qualify a potential layer as a cloud.  Therefore, we require all bins within a distance greater or 303	  

equal to the minimum layer thickness to exceed the minimum detectable scattering ratio in Eq. 304	  

(10) before a cloud base is established.  Similarly, a minimum clear air distance of 150 m is used 305	  
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to avoid falsely segmenting a single cloud into multiple layers.  All bins within the minimum 306	  

clear distance must fall below the minimum detectable scattering ratio in order to establish a 307	  

cloud top.  The second constraint requires that the standard deviation of the attenuated scattering 308	  

ratio (βrʹ′) within the detected layer exceed an empirically-determined threshold, σmin, which 309	  

varies as a function of cloud top temperature.  Cloud layers generally cause large variances in βrʹ′, 310	  

either through attenuation effects in otherwise colloidally-stable liquid water clouds or since ice 311	  

crystals fall within cirrus cloud layers, creating complex structures.  By contrast, aerosols in the 312	  

free troposphere settle in stratified stable layers absent of convection and are expected to be 313	  

homogeneous within each layer.  Thus, clouds layers can be distinguished by their relatively 314	  

large standard deviations of βrʹ′.       315	  

 In order to determine σmin, a dataset was developed consisting of 144 days at GSFC in 2012 316	  

and 27061 retrieved UCDM layers at one-minute resolution (18308 thin cirrus cloud layers, 3233 317	  

non-cirrus layers, 5520 aerosol layers) when the particulate type could be reasonably identified 318	  

from visual inspection (Fig. 7).  Thin cirrus clouds are distinguished using a cloud top 319	  

temperature threshold of -37 °C (Sassen and Campbell 2001, Campbell et al. 2015) and a 320	  

maximum cloud optical depth (COD) of 0.3 (Sassen and Cho 1992).  The COD calculation uses 321	  

a process described by Chew et al. (2011) and is discussed fully in Section 3.c.1.  Non-cirrus 322	  

clouds are those with cloud top temperature warmer than -37 °C.   323	  

 Several choices for σmin were evaluated using error matrices (Congalton and Meade 1986) 324	  

and the corresponding values of accuracy and Matthews correlation coefficient (Matthews 1975; 325	  

MCC) which are defined as  326	  

 (14) Accuracy = TP +TN
TP +FP +FN +TN



	   16	  

and	  327	  
	  328	  

, (15) 

where TP is the number of instances when clouds were correctly identified, TN is the number of 329	  

instances when aerosols were correctly identified, FP is the number of instances when aerosols 330	  

were misidentified as clouds, and FN is the number of instances when clouds were misidentified 331	  

as aerosols.  The choice for σmin that resulted in the highest values of accuracy (0.92) and MCC 332	  

(0.74) is given by 333	  

σmin =

2, for T > −37 !C

10
T+40

10 , for − 47 !C < T < −37 !C

0.2, for T < − 47 !C

"

#

$
$

%

$
$

. (16) 

The error matrix for the empirically-determined σmin is provided in Table 1.  However, we note 334	  

that the dataset contains two atypical long-range smoke transport events (with corresponding top 335	  

height temperatures between -50 °C and -60 °C), which comprised 35% of the aerosol category.  336	  

If these two events are removed, the accuracy and MCC improve to 0.98 and 0.92, respectively.  337	  

Similar results were observed at the five- and twenty-minute resolutions, but not shown for 338	  

brevity.                    339	  

 The final constraint used to distinguish cloud from aerosol layers is that the estimated COD 340	  

exceed a threshold, τmin.  Through empirical testing, we estimate COD and set τmin = 0.005 based 341	  

on analysis of these subsets relative to the perception of how noise impacts these sub-samples 342	  

combined with a similar analysis by Thorsen et al. (2011).   343	  

 We briefly note here that lidars with polarization capabilities have recently been 344	  

incorporated into the MPLNET project.  However, because the overwhelming majority of 345	  

MCC= TP×TN −FP×FN
(TP +FP)(TP +FN )(TN +FP)(TN +FN )
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existing data (which spans from 2000 – present) was collected without polarization, the 346	  

algorithm presented here does not rely on such data.  It remains as a future goal to demonstrate 347	  

how polarization can be used to improve aerosol-cloud discrimination, once a sufficient amount 348	  

of data is collected from the new polarized sites.    349	  

c.  Version 3 algorithm output  350	  

 A listing of the V3 cloud detection algorithm output parameters are provided in Table 2.  351	  

The output parameters from all temporal averages are gridded to one-minute temporal resolution, 352	  

as previously described in the combined cloud scene.  The number of cloud layers detected, day 353	  

flag, and attenuation altitude are given as a single value each minute, characterizing the 354	  

atmospheric column.  All other cloud products and data flags correspond with individual cloud 355	  

layers, and are provided each minute with dimensions equal to the number of cloud layers 356	  

detected.  Meteorological values at the cloud boundaries are obtained from the interpolated 357	  

GEOS-5 profiles described in Section 2.  358	  

 1) CLOUD PHASE AND CIRRUS CLOUD OPTICAL DEPTH           359	  

 In the absence of visual cloud observations, as is the case for autonomous lidar 360	  

measurements made by MPLNET, Sassen and Campbell (2001) recommend using a minimum 361	  

cloud top temperature of -37 °C to identify cirrus.  In the V3 cloud algorithm, we use this 362	  

thermal threshold to distinguish ice clouds (i.e. cirrus) from all other cloud phases.  Because 363	  

depolarization capabilities are not standard for all MPLNET instruments, no attempt is made to 364	  

distinguish liquid from mixed phase clouds.           365	  

 Campbell et al. (2015) evaluate the -37 °C cloud top temperature threshold globally versus 366	  

the Level 2 CALIOP algorithms that identify ice-phase cloud layers and found that over 99% of 367	  

clouds satisfying this thermal threshold were classified as ice.  Furthermore, 81% of all ice 368	  

clouds had cloud top temperatures less than -37 °C.  They conclude, consistent with the findings 369	  
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of Sassen and Campbell (2001), that this thermal threshold is stable for specifically 370	  

distinguishing cirrus cloud presence in lidar studies that lack depolarization, though there is some 371	  

ambiguity in cases of “warm” cirrus that likely coincide with cloud top temperature greater than 372	  

-37 °C. 373	  

 An estimated COD is calculated for clouds distinguished as cirrus using the procedure 374	  

described by Chew et al. (2011).  Two-way cloud transmission is calculated using Eq. (11).  375	  

However, now the value of SC is selected based on the cloud top temperature.  Reported values 376	  

of SC are on the order of 16–18 sr for liquid water clouds (Pinnick et al. 1983, Yorks et al. 2011) 377	  

and 10–40 sr for cirrus (Sassen and Comstock 2001; Chen et al. 2002; Yorks et al. 2011; Garnier 378	  

et al. 2015).  A value of SC = 18 sr is chosen for layers with clouds top temperatures warmer than 379	  

-37 °C and SC = 20 sr at colder temperatures where cirrus clouds are expected.  We note that due 380	  

to uncertainty in the lidar ratio for cirrus clouds, these estimates may represent the lower limit of 381	  

COD.    382	  

 Next, Eq. (12) is used to solve for the cloud backscatter coefficient and the estimated COD 383	  

is given by  384	  

τ = SC βC (z)dz
base

top

∫ = SC βm (z)
βr"(z)
TC
2 (z)

−1
$

%
&
&

'

(
)
)dz

base

top

∫ . (17) 

The fidelity of the COD estimate is limited by the choice of SC and accuracy of cloud boundaries 385	  

retrieved.  The relative error in the lidar-derived optical depth is smallest for low optical depths 386	  

and proportional to ΔSC/SC as τ approaches zero (Winker et al. 2009).  Lidar signals are unable to 387	  

penetrate through optically-thick clouds, which causes uncertainty in the value at the apparent 388	  

cloud top.  In these cases, the estimated COD will be biased low.  Similarly, attenuation from the 389	  

bottom-most cloud layer leads to uncertainty in corresponding retrievals of higher clouds for 390	  
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lidar profiles containing multiple cloud layers.  As a result, the estimated COD will be most 391	  

reliable for single-layer, optically-thin clouds.    392	  

 2) RETRIEVAL INDEX 393	  

 While cloud boundaries are only reported at a single temporal resolution, a retrieval index is 394	  

included to indicate whether the cloud was also detected at one or more of the other temporal 395	  

averages.  Cloud layers at different temporal resolutions are considered the same if (i) they share 396	  

a common base or top height within a vertical depth of 250 m or (ii) one cloud layer is 397	  

completely enveloped within the other.   398	  

 An example of a combined cloud scene, with corresponding retrieval indices, is shown in 399	  

Fig. 8.  The value of the retrieval index is equal to the sum of the temporal resolutions used to 400	  

identify the cloud layer.  For example, if a cloud is detected at all three temporal resolutions, the 401	  

value of the retrieval index is 1+5+20 = 26.  The advantage of the multi-temporal averaging 402	  

scheme can be seen during the day between 1400–1500 UTC in Fig. 8.  The elevated cloud layer 403	  

(~15 km) is mostly undetected at the one-minute resolution, but can be resolved using the longer 404	  

averages.  The cloud layer at ~2 km produces “beam-blocked” conditions that prevent use of 405	  

higher-temporal averages for much of the cirrus cloud layer above it.     406	  

 3) ATTENUATION ALTITUDE 407	  

 Because the lidar signal can become completely attenuated within optically-thick clouds, it 408	  

is important to determine when a true cloud top is being reported as opposed to an apparent 409	  

cloud top.  Nadir-pointing lidar instruments have an advantage of using the ground return to 410	  

determine if the lidar signal has been extinguished.  However, with zenith-pointing lidar, that 411	  

determination is more tenuous.  Winker and Vaughan (1994) defined a transmittance index to 412	  

determine when the lidar signal was fully attenuated based on the percentage of samples above 413	  

the cloud top that exceeded the background.  Other techniques used for zenith-pointing lidar 414	  
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have included the use of a minimum threshold lidar signal along with its slope (Wang and Sassen 415	  

2001) and comparisons with molecular profiles (Lo et al. 2006).   416	  

 In V3, cloud tops (both true and apparent) are reported for all cloud layers along with the 417	  

altitude at which the lidar signal is determined to be fully attenuated.  This attenuation altitude is 418	  

found by starting at the range bin of the highest reported cloud altitude and incrementally 419	  

moving upwards in the profile until, within a depth of 2 km, (i) the percent difference between 420	  

the mean pseudo-attenuated backscatter and modeled attenuated molecular backscatter falls 421	  

below some threshold, T1, and (ii) either the backscatter signal falls below a minimum value or 422	  

the percentage of range bins where the backscatter signal is less than zero exceeds a threshold T2.  423	  

 This application pertains specifically to profiles that contain clouds or other obstructions, 424	  

since the attenuation thresholds can also be satisfied by other conditions that lead to low SNR 425	  

(e.g. high solar background).  “Beam-block” conditions from low-altitude obstructions are found 426	  

with the same search criteria, though the search is limited to the first 2 km above the surface.    427	  

4. Results 428	  

 In order to demonstrate the effects of the changes implemented in the V3 algorithm, we 429	  

compare V2 and V3 cloud retrievals for one year at the GSFC MPLNET site.  Table 3 and Fig. 9 430	  

show data sampling statistics for 2012, including the total number of profiles and percentage of 431	  

time when 1-minute NRB measurements were available monthly.  Observable profiles are given 432	  

as the number and percentage of available profiles that are not “beam-blocked” below 2 km, 433	  

MSL.  Profile attenuation was determined using the V2 method because it is the most restrictive 434	  

and ensures an even comparison between the two cloud detection algorithms.  The diurnal 435	  

distribution of data recorded and successful V3 normalizations to calculate Cf
* are also shown.  436	  

There is very little differentiation between the distributions of V2 and V3 normalizations, so only 437	  
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the number of successful V3 normalizations are shown for simplicity. Though MPLNET 438	  

measurements are continuous, there is a decrease in the number of successful normalizations 439	  

near solar noon in relatively low SNR conditions. 440	  

 Because V3 uses a merged cloud scene and V2 is only processed at one-minute resolution, 441	  

V3 retrievals are evaluated using the base one-minute resolution (hereafter V3b) and the merged 442	  

cloud scene (hereafter V3m).  Comparisons are limited to cloud base statistics because cloud 443	  

tops are not recorded for all V2 retrievals.  Finally, we describe the macrophysical and optical 444	  

characteristics of cirrus clouds observed during this study, again adhering to the methodology 445	  

described in Campbell et al. (2015), using V3 retrievals.       446	  

a. Vertical dependence  447	  

 Figure 10 shows the cloud base distributions retrieved from the V2 and V3 algorithms, 448	  

respectively, at GSFC during 2012.  A bimodal distribution similar to that observed by Winker 449	  

and Vaughan (1994), with peaks at ~1-2 km and ~9-10 km is apparent.  The total numbers of 450	  

cloud observations are 269505, 304363, and 332810 for the V2, V3b, and V3m retrievals, 451	  

respectively.  Compared with V2, the number of cloud observations increases by 12.9% and 452	  

23.5% for V3b and V3m, respectively.  The largest increase in the number of clouds observed 453	  

occurs at altitudes above 5 km.   454	  

 Because the difference in the number of clouds retrieved shows a clear vertical dependence, 455	  

we examine them specifically for three sub-samples, by defining low clouds as those with base 456	  

heights less than 2 km, high clouds as those with base heights greater than 5 km, and middle 457	  

clouds as those with base heights between 2-5 km (WMO 1975).  The number of lidar profiles 458	  

for each classification, along with occurrence frequency, is shown in Table 4.  Cloud occurrence 459	  

frequency is defined as the number of lidar profiles containing a particular cloud classification 460	  
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divided by the total number of observable profiles.  Regardless of the retrieval method (V2, V3b, 461	  

and V3m), occurrence frequency is nearly identical for low clouds, which reflects the relative 462	  

consistency in GCDM application between V2 and V3 at one-minute resolution.  High clouds 463	  

show the largest increase in occurrence frequency.  For example, comparing the V2 and V3m 464	  

algorithms, the occurrence frequency of high clouds increases by 5.9% attributable to (i) the 465	  

increased identification of elevated, multi-layer cloud decks using an attenuated UCDM 466	  

threshold, (ii) increased use of the UCDM to identify high clouds at day and night, and (iii) 467	  

multi-temporal application of UCDM to increase SNR.  To (i), V2 retrievals resulted in 91% of 468	  

cloudy lidar profiles containing single-layer clouds.  The percentage of single-layer clouds 469	  

decreases to 83% and 80% for V3b and V3m, respectively.   470	  

b. Seasonal dependence 471	  

 Figure 11 shows the annual cycle for low, middle, high, and total cloud classifications 472	  

during 2012.  The low cloud occurrence frequency is nearly identical for all three retrieval 473	  

methods.  Middle clouds retrieved using V3b and V3m exhibit a slight separation from V2.  The 474	  

largest differences are again seen with high-cloud retrievals.  While the annual cycles for high 475	  

clouds show similar patterns for all three retrievals, there is an increase in occurrence frequency 476	  

of ~3% and 6% for V3b and V3m, respectively.  The increase in high-cloud occurrence 477	  

frequency when compared to V2 ranges from 1% to 4% using V3b and 4% to 10% for V3m.  478	  

The largest differences for high-cloud occurrence frequency between V2 and V3 occurs during 479	  

summer months, which is coincident with the period when the sun is at its highest elevation and 480	  

thus solar background is highest.  481	  

c. Diurnal dependence 482	  
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 Differences in the diurnal cycle show similar characteristics as the annual cycles for low and 483	  

middle clouds.  As seen in Fig. 12, V2, V3b, and V3m are nearly identical for low clouds.  While 484	  

V3b and V3m show slight differences from V2, they are indistinguishable from each other.  485	  

High-cloud diurnal cycles follow the same trends for all three retrievals.  However, the cloud 486	  

occurrence frequency is higher for V3b and highest for V3m.  No clear diurnal trend is apparent 487	  

at GSFC because some changes (e.g. using the UCDM at all times) affect both day and night 488	  

retrievals.  At tropical sites, where the solar background is higher and longer temporal averaging 489	  

is necessary, there may be a more obvious diurnal trend.       490	  

d. Macrophysical and optical cirrus properties 491	  

 Based on the greater detection of high clouds demonstrated above, we characterize cirrus 492	  

clouds over the GSFC site as detected by the V3 algorithm.  As stated earlier, cirrus presence is 493	  

determined using a cloud top temperature threshold of -37 °C.  Additionally, we limit the 494	  

analysis to cases when (i) only cirrus clouds (no underlying liquid water or mixed phase clouds) 495	  

were detected in the profile, (ii) the estimated COD was less than 3, based on the upper-limit for 496	  

cirrus clouds suggested by Sassen and Cho (1992), and (iii) the attenuation altitude was at least 2 497	  

km above the cloud top.  The final constraint limits the analysis to “transparent cirrus”  cases for 498	  

which the algorithm is more likely to identify the true cloud top.              499	  

 The resulting dataset includes 57930 cirrus clouds.  The majority of cloud detections (82%) 500	  

occur at the base one-minute temporal resolution. The largest occurrence rate of the coarse 501	  

temporal averages occurs at or near noon and during the summer months when the solar 502	  

background is highest.             503	  

 Table 5 summarizes the seasonal and annual mean characteristics of the transparent cirrus 504	  

dataset.  The monthly variation in the macrophysical properties is shown in Fig. 13.  Cirrus 505	  
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clouds over GSFC tend to be higher and thinner (geometrically and optically) in the spring and 506	  

summer and lower and thicker in the fall and winter seasons.  Cirrus also occur more frequently 507	  

in the spring and summer months.  The transparent cirrus dataset is composed almost entirely 508	  

(~95%) of sub-visual (COD < 0.03) and thin (COD <  0.3) cirrus clouds.  Uncertainties in the 509	  

value of the extinction-to-backscatter ratio and cloud top height could lead to an exaggeration of 510	  

this finding.  However, it should be noted that when the extinction-to-backscatter ratio is 511	  

increased from 20 sr to 30 sr (not shown), 86% of cirrus clouds still have a COD less than 0.3.  512	  

These results are qualitatively consistent with the findings of Dupont et al. (2010), who reported 513	  

50-75% of non-opaque cirrus clouds had an optical thickness less than 0.3 based on ground-514	  

based lidar and CALIPSO observations at four mid-latitude sites.   515	  

 Frequency distributions of the optical and macrophysical properties are presented in Fig. 14.  516	  

The cloud optical depth peaks in the sub-visual range and has a positive skew.  The transparent 517	  

cirrus dataset suggests that the limit at which we are able to resolve molecular signal above 518	  

cloud, and thus reliably determine the cloud top, occurs near a COD of 0.5.  However, if an 519	  

extinction-to-backscatter ratio of 30 sr is used, this limit occurs near a COD of 0.8.  520	  

 A comparison of daytime and nighttime cloud retrievals is provided in Table 6.  There are 521	  

only slight differences in the occurrence frequency between day and night cases.  However, the 522	  

geometric and optical depths are considerably lower in the daytime.  The thinning of daytime 523	  

cirrus may be attributable to difficulty in correctly identifying cloud boundaries due to solar 524	  

background effects (Thorsen et al. 2013).  However, convective cloud remnants are also likelier 525	  

to occur during daytime hours.  Decoupling the two, aside from seasonal influence, is outside the 526	  

scope of this analysis.  In the same manner, the daytime retrievals are more likely to be 527	  
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considered as totally attenuated due to the higher solar background reducing the possibility to 528	  

resolve molecular signal at cirrus heights.   529	  

5. Summary and Discussion     530	  

 A new Version 3 (V3) cloud detection algorithm has been developed within the NASA 531	  

Micropulse Lidar Network (MPLNET) that uses a combination of retrieval methods and a multi-532	  

temporal averaging  scheme.  Most V3 changes represent updates to the Version 2 (V2) 533	  

uncertainty-based threshold algorithm introduced by Campbell et al. (2008).  The threshold used 534	  

to identify cloud presence now accounts for attenuation losses within cloud layers, which allows 535	  

for better estimation of cloud tops and boundaries of overlying cloud layers in profiles where 536	  

multiple cloud layers are detected.  A more synergistic merging of the gradient-based cloud 537	  

detection method (GCDM) and uncertainty-based cloud detection method (UCDM) improves 538	  

nighttime clouds detection of tenuous high clouds.  The incorporation of coarser temporal 539	  

resolutions at intermediate (5-minute) and long (20-minute) averages improves detection in 540	  

situations with low SNR (e.g. high solar background).   One year of data at the NASA Goddard 541	  

Space Flight Center (GSFC) in Greenbelt, MD is used to show the effect of these updates on 542	  

cloud retrievals. 543	  

 The largest impact of the changes to the cloud detection algorithm is evident with high 544	  

clouds (those with cloud base > 5 km), while the diurnal and annual cycles of low and middle 545	  

clouds exhibit only slight changes from V2 to V3.  The high-cloud occurrence frequency 546	  

increases by nearly 6% at GSFC when using the V3 merged cloud scene compared with the V2 547	  

retrieval.  Furthermore, the ability to detect multi-layered cloud scenes is improved with the V3 548	  

algorithm.  The results show that 91% of clouds in 2012 at the NASA GSFC project site were 549	  

recorded as single-layer clouds according to the V2 retrieval compared with 80% for V3.   550	  
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  A brief investigation of macrophysical properties for transparent cirrus clouds shows that 551	  

the mean base and top heights at GSFC occur at 10.17 ± 1.63 km and 11.07 ± 1.43 km, 552	  

respectively.  The highest and thinnest (both geometrically and optically) cirrus are found during 553	  

the spring and summer months, which was coincident with the highest cirrus occurrence 554	  

frequency.  There is no significant difference in occurrence frequency between daytime and 555	  

nighttime retrievals.  However, cirrus clouds are thinner (both geometrically and optically) in 556	  

daytime than nighttime, which may be attributed to a combination of increased uncertainty due 557	  

to the solar background effects and higher occurrence of convective cloud remnants during the 558	  

day.  Notably, the limit to which we are able to resolve molecular signal above cirrus clouds 559	  

occurs between cloud optical depths of 0.5 and 0.8, allowing for uncertainty in the extinction-to-560	  

backscatter ratio.       561	  

 The value of the MPLNET cloud datasets is in its continuous (both day and night) and long-562	  

term measurements at polar, mid-latitude, and tropical sites using a standard instrument and data 563	  

processing algorithm.  Incorporating the V3 cloud retrievals from MPLNET as part of a multi-564	  

instrument investigation will enhance our current knowledge of clouds, in particular cirrus.  As it 565	  

stands, the cloud products provide a unique validation dataset for the modeling community and 566	  

satellite measurements.  With some MPLNET sites now well into their second decade of 567	  

continuous cloud and aerosol observations, the project has become an integral component of 568	  

ground-based evaluation of atmospheric processes and verification of NASA satellite missions.  569	  

This paper thus represents our continuing effort to optimize the fidelity of project datasets for the 570	  

benefit of the community and in sustaining general scientific inquiry.         571	  
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TABLE 1. Error matrix for cloud-aerosol discrimination using σmin  732	  

 Predicted cloud Predicted aerosol 
True cloud 21242 299 
True aerosol 1851 3669 

  733	  
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Table 2. MPLNET V3 cloud detection algorithm output  734	  

Parameter Description  

Base and top altitudes Cloud boundaries in km above MSL 

Nlayers Number of cloud layers detected 

Nprofiles Number of 1-min profiles used in average profile 

Method of cloud detection GCDM or UCDM 

Cloud phase Ice or liquid/mixed phase based on -37 °C threshold 

Estimated cirrus COD Calculated using lidar ratios of 20 and 30 sr,  ranging from 

0.005 to 3 

Base and top temperatures From FP-IT GEOS-5 Version 5.9.1 

Base and top pressures From FP-IT GEOS-5 Version 5.9.1 

Base and top wind speeds From FP-IT GEOS-5 Version 5.9.1 

Base and top wind directions From FP-IT GEOS-5 Version 5.9.1 

Day/night flag 0 = Night, 1=Day (from ephemeris) 

Retrieval index Indicates temporal average used to identify the cloud layer  

Attenuation altitude Altitude where lidar beam is deemed to be significantly  

attenuated 

  735	  
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TABLE 4. Number of lidar profiles and occurrence frequency at GSFC in 2012  736	  

V2 V3b V3m 

Low clouds 

77943 78511 78513 

0.181 0.183 0.183 

   

 Middle clouds  

69612 75353 75462 

0.162 0.175 0.175 

   

 High clouds  

109366 120750 134514 

0.254 0.281 0.313 

   

 Total clouds  

246132 255079 267777 

0.572 0.593 0.623 
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 TABLE 5. Transparent cirrus cloud properties 738	  

 Spring 

(MAM) 

Summer 

(JJA) 

Fall 

(SON) 

Winter 

(DJF) 

Annual 

Cloud base      

     Height (km) 10.46 ± 1.44 11.17 ± 1.48 9.77 ± 1.33 9.13 ± 1.49 10.17 ± 1.63 

     Temperature (ºC) -50.3 ± 9.7 -47.9 ± 9.2 -43.9 ± 8.9 -45.7 ± 10.2 -47.4 ± 9.9 

     Pressure (mb) 262.6 ± 57.6  243.9 ± 52.0 291.0 ± 53.7 312.4 ± 66.8 275.9 ± 63.7 

     Wind speed (m s-1) 23.3 ± 12.5 20.3 ± 11.0 26.6 ± 10.7 38.6 ± 14.5 27.1 ± 14.2 

     Wind direction (º) 277.2 ± 40.2 236.8 ± 110.3 259.4 ± 28.3 279.1 ± 20.5 264.6 ± 63.3 

Cloud top      

     Height (km) 11.39 ± 1.35 11.93 ± 1.34 10.74 ± 1.16 10.09 ± 1.33 11.07 ±1.48 

     Temperature (ºC) -57.0 ± 8.1 -53.5 ± 8.0 -51.3 ± 7.3 -52.9 ± 8.4 -54.1 ± 8.3 

     Pressure (mb) 225.9 ± 47.0 215.4 ± 41.6 249.9 ± 41.2 267.6 ± 52.4 238.4 ± 50.5 

     Wind speed (m s-1) 24.5 ± 12.9 21.8 ± 11.8 29.6 ± 11.4 42.5 ± 15.6 29.3 ± 15.4 

     Wind direction (º) 277.2 ± 37.4 238.3 ± 108.0 259.5 ± 29.6 279.3 ± 20.6 265.0 ± 61.7 

Cloud depth (km) 0.93 ± 0.61 0.76 ± 0.51 0.97 ± 0.70 0.96 ± 0.69 0.90 ± 0.63 

Estimated COD 0.07 ± 0.10 0.06 ± 0.10 0.09 ± 0.14 0.09 ± 0.12 0.08 ± 0.11 

Cirrus Type (%)      

     Sub-visual 47 51 45 41 46 

     Thin 50 46 49 53 49 

     Opaque 3 3 6 6 5 

Occurrence (%) 17 12 10 13 13 

Cloud layers 18664 13889 10769 14608 57930 
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TABLE 6. Daytime and nighttime transparent cirrus properties  739	  

 Daytime Nighttime 

Cloud base   

     Height (km) 10.15 ± 1.69 10.19 ± 1.58 

     Temperature (ºC) -47.3 ± 10.0 -47.5 ± 9.8 

     Pressure (mb) 277.2 ± 65.8 274.9 ± 61.9 

     Wind speed (m s-1) 27.1 ± 14.0 27.0 ± 14.5 

     Wind direction (º) 258.6 ± 70.4 269.6 ± 56.2 

Cloud top   

     Height (km) 10.94 ± 1.51 11.19 ± 1.44 

     Temperature (ºC) -53.2 ± 8.4 -54.8 ± 8.1 

     Pressure (mb) 243.5 ± 51.4 234.0 ± 49.3 

     Wind speed (m s-1) 29.1 ± 15.1 29.5 ± 15.6 

     Wind direction (º) 259.8 ± 68.3 269.4 ± 55.2 

Cloud depth (km) 0.79 ± 0.56 1.00 ± 0.67 

Estimated COD 0.07 ± 0.11 0.09 ± 0.12 

Cirrus Type (%)   

     Sub-visual 51 42 

     Thin 46 52 

     Opaque 3 6 

Occurrence (%) 12 14 

Cloud layers 26360 31570 
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3 Representation of the UCDM (GSFC; 0300 UTC 7 July 2012).  The bottom (r1) and 
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47 

4 (Top) Version 2 cloud retrievals at GSFC site on 23 March 2012 (one-minute 
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respectively.  The noise altitude (i.e. δNRB/NRB > 0.5) is represented by the solid 

white line (four-minute smoothing applied for clarity). (Bottom)  Same as top figure 

but using the V3 algorithm at one-minute resolution.  The bottom of the 

normalization region is represented by the solid white line (four-minute smoothing 

applied for clarity).    
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boundaries encloses 50% of the data nearest the median and thick boundaries 

enclose 90% of the data.  The dashed line indicates the empirically-determined σmin.     

8 (Top) Example of a combined cloud seen at the GSFC MPLNET site on 7 July 

2012.  (Bottom) Retrieval flags showing the temporal resolutions used to detect the 

combined cloud scene.  Square symbols are used to indicate the cloud base and the 

Xs are used for the cloud top.   

52 

9 (Top) Number of minutes when data was recorded by month. (Bottom) The number 

of minutes data was recorded each hour.  The red colors represent the successful Cf
* 

normalizations and yellow are the total data. 

53 

10 Cloud base height distributions for GSFC during 2012 for V2 (solid line), V3b 

(dashed line) and V3m (dash-dotted line).  Vertical axis bin size equals 1 km.    

54 
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dotted line V3m. 

55 

12 Diurnal cycle of the occurrence frequency for low, middle, high and total clouds at 

GSFC during 2012. The solid line represents V2, the dashed line V3b, and 

the dash-dotted line V3m. 

56 

13 Monthly averaged cloud top (thick solid line), cloud base (thin solid line), cloud 
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57 

14 (a) Cloud base altitude, (b) cloud top altitude and (c) cloud depth for the transparent 

cirrus dataset.  The colors indicate the cirrus type based on the estimated COD (blue 

for sub-visual, yellow for thin, and red for opaque cirrus).  Horizontal axis bin size 
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is 0.5 km for base and top altitudes and 0.25 km for cloud depth.  (d) Frequency 

distribution (black) and cumulative frequency distribution (red).  The vertical dashed 

lines indicate the thresholds for sub-visual (0.03) and thin (0.3) cirrus clouds.  

Horizontal axis bin size equals 0.001.   

	   	  741	  



	   45	  

	  742	  
FIG. 1. Examples of the NRB at GSFC on 7 July 2012 at day (1800 UTC, black) and night (0300 743	  
UTC, red).    744	  
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 745	  
FIG. 2. Representation of the GCDM (GSFC; 0233 UTC 7 Nov 2012).  The product of the 746	  
calibration constant and attenuated scattering ratio is shown in the left panel and its derivative is 747	  
shown on the right.  The vertical dashed lines represent the amin and amax thresholds.   748	  
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 749	  
FIG. 3. Representation of the UCDM (GSFC; 0300 UTC 7 July 2012).  The bottom (r1) and top 750	  
(rN) of the normalization region are indicated by the horizontal dashed lines.  The red curve 751	  
represents the product of Cf

*  and the minimum detectable scattering ratio used to determine the 752	  
cloud boundaries.    753	  
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 754	  
FIG. 4. (Top) Version 2 cloud retrievals at GSFC site on 23 March 2012 (one-minute resolution).  755	  
Cloud bases and tops are indicated by red and orange markers, respectively.  The noise altitude 756	  
(i.e. δNRB/NRB > 0.5) is represented by the solid white line (four-minute smoothing applied for 757	  
clarity). (Bottom)  Same as top figure but using the V3 algorithm at one-minute resolution.  The 758	  
bottom of the normalization region is represented by the solid white line (four-minute smoothing 759	  
applied for clarity).     760	  
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	  761	  
FIG. 5. Schematic of the V3 cloud detection algorithm at the one-minute base resolution.  762	  
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 763	  
FIG. 6. Schematic of the V3 cloud detection algorithm for higher temporal averages.   764	  
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 765	  
FIG. 7. (Left) Representative groupings of cirrus clouds, non-cirrus clouds, and aerosols from 766	  
GSFC (3-5 Aug 2012).  (Right) Scatterplot of full dataset used to determine σmin threshold.  The 767	  
Xs represent the median values of each group, the thin boundaries encloses 50% of the data 768	  
nearest the median and thick boundaries enclose 90% of the data.  The dashed line indicates the 769	  
empirically-determined σmin.      770	  
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 771	  
FIG. 8. (Top) NRB from lidar measurements at the GSFC MPLNET site on 7 July 2012. 772	  
(Bottom) Retrieval indices showing the temporal resolutions used to detect the combined cloud 773	  
scene.  Square symbols are used to indicate the cloud base and the Xs are used for the cloud top.    774	  
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 775	  
FIG. 9. (Top) Number of minutes when data was recorded by month. (Bottom) The number of 776	  
minutes data was recorded each hour.  The red colors are the successful Cf

* normalizations and 777	  
yellow are the total data. 778	  
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    779	  
FIG. 10. Cloud base height distributions for GSFC during 2012 for V2 (solid line), V3b (dashed 780	  
line) and V3m (dash-dotted line).  Vertical axis bin size equals 1 km.     781	  

0 1×104 2×104 3×104 4×104 5×104

Occurrences

0

5

10

15

20
Al

tit
ud

e 
(k

m
)

V2
V3b (1-min)
V3m (merged)



	   55	  

 782	  
FIG. 11. Annual cycle of the occurrence frequency for low, middle, high and total clouds at 783	  
GSFC during 2012. The solid line represents V2, the dashed line V3b, and the dash-dotted line 784	  
V3m. 785	  
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 786	  
FIG. 12. Diurnal cycle of the occurrence frequency for low, middle, high and total clouds at 787	  
GSFC during 2012. The solid line represents V2, the dashed line V3b, and the dash-dotted line 788	  
V3m.  789	  
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 790	  
FIG. 13. Monthly averaged cloud top (thick solid line), cloud base (thin solid line), cloud depth 791	  
(dashed red line) and cloud optical depth (dashed-dotted blue line) for the transparent cirrus 792	  
dataset.    793	  
  794	  
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 795	  
FIG. 14. (a) Cloud base altitude, (b) cloud top altitude and (c) cloud depth for the transparent 796	  
cirrus dataset.  The colors indicate the cirrus type based on the estimated COD (blue for sub-797	  
visual, yellow for thin, and red for opaque cirrus).  Horizontal axis bin size is 0.5 km for base 798	  
and top altitudes and 0.25 km for cloud depth.  (d) Frequency distribution (black) and cumulative 799	  
frequency distribution (red).  The vertical dashed lines indicate the thresholds for sub-visual 800	  
(0.03) and thin (0.3) cirrus clouds.  Horizontal axis bin size equals 0.001.   801	  
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